Revisiting Panel Data Discrete Choice Models with Lagged Dependent Variables

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christopher R Dobronyi, Fu Ouyang, Thomas Tao Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196395

This paper revisits the identification and estimation of a class of semiparametric (distribution-free) panel data binary choice models with lagged dependent variables, exogenous covariates, and entity fixed effects. We provide a novel identification strategy, using an "identification at infinity" argument. In contrast with the celebrated Honore and Kyriazidou (2000), our method permits time trends of any form and does not suffer from the "curse of dimensionality". We propose an easily implementable conditional maximum score estimator. The asymptotic properties of the proposed estimator are fully characterized. A small-scale Monte Carlo study demonstrates that our approach performs satisfactorily in finite samples. We illustrate the usefulness of our method by presenting an empirical application to enrollment in private hospital insurance using the Household, Income and Labour Dynamics in Australia (HILDA) Survey data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH