Out of Sample Predictability in Predictive Regressions with Many Predictor Candidates

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jesus Gonzalo, Jean-Yves Pitarakis

Ngôn ngữ: eng

Ký hiệu phân loại: 616.97505 Other diseases

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196439

This paper is concerned with detecting the presence of out of sample predictability in linear predictive regressions with a potentially large set of candidate predictors. We propose a procedure based on out of sample MSE comparisons that is implemented in a pairwise manner using one predictor at a time and resulting in an aggregate test statistic that is standard normally distributed under the global null hypothesis of no linear predictability. Predictors can be highly persistent, purely stationary or a combination of both. Upon rejection of the null hypothesis we subsequently introduce a predictor screening procedure designed to identify the most active predictors. An empirical application to key predictors of US economic activity illustrates the usefulness of our methods and highlights the important forward looking role played by the series of manufacturing new orders.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH