Forecasting Macroeconomic Tail Risk in Real Time: Do Textual Data Add Value?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Philipp Adämmer, Jan Prüser, Rainer Schüssler

Ngôn ngữ: eng

Ký hiệu phân loại: 339.5 Macroeconomic policy

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196503

We examine the incremental value of news-based data relative to the FRED-MD economic indicators for quantile predictions of employment, output, inflation and consumer sentiment in a high-dimensional setting. Our results suggest that news data contain valuable information that is not captured by a large set of economic indicators. We provide empirical evidence that this information can be exploited to improve tail risk predictions. The added value is largest when media coverage and sentiment are combined to compute text-based predictors. Methods that capture quantile-specific non-linearities produce overall superior forecasts relative to methods that feature linear predictive relationships. The results are robust along different modeling choices.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH