Unified and robust Lagrange multiplier type tests for cross-sectional independence in large panel data models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhenhong Huang, Zhaoyuan Li, Jianfeng Yao

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 196511

This paper revisits the Lagrange multiplier type test for the null hypothesis of no cross-sectional dependence in large panel data models. We propose a unified test procedure and its power enhancement version, which show robustness for a wide class of panel model contexts. Specifically, the two procedures are applicable to both heterogeneous and fixed effects panel data models with the presence of weakly exogenous as well as lagged dependent regressors, allowing for a general form of nonnormal error distribution. With the tools from Random Matrix Theory, the asymptotic validity of the test procedures is established under the simultaneous limit scheme where the number of time periods and the number of cross-sectional units go to infinity proportionally. The derived theories are accompanied by detailed Monte Carlo experiments, which confirm the robustness of the two tests and also suggest the validity of the power enhancement technique.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH