Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yu Jeffrey Hu, Jeroen Rombouts, Ines Wilms

Ngôn ngữ: eng

Ký hiệu phân loại: 551.63 Weather forecasting and forecasts, reporting and reports

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196534

On-demand service platforms face a challenging problem of forecasting a large collection of high-frequency regional demand data streams that exhibit instabilities. This paper develops a novel forecast framework that is fast and scalable, and automatically assesses changing environments without human intervention. We empirically test our framework on a large-scale demand data set from a leading on-demand delivery platform in Europe, and find strong performance gains from using our framework against several industry benchmarks, across all geographical regions, loss functions, and both pre- and post-Covid periods. We translate forecast gains to economic impacts for this on-demand service platform by computing financial gains and reductions in computing costs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH