Don't (fully) exclude me, it's not necessary! Causal inference with semi-IVs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christophe Bruneel-Zupanc

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196684

This paper proposes semi-instrumental variables (semi-IVs) as a practical alternative to instrumental variables (IVs) to identify the causal effect of a binary (or discrete) endogenous treatment. A semi-IV is a less restrictive form of instrument: it affects the selection into treatment but is excluded only from one, not necessarily both, potential outcomes. Having two semi-IVs, one excluded from the potential outcome under treatment and the other from the potential outcome under control, is sufficient to nonparametrically point identify local average treatment effect (LATE) and marginal treatment effect (MTE) parameters. In practice, semi-IVs provide a solution to the challenge of finding valid IVs because they are easier to find: most selection-specific shocks, policies, costs, or benefits are valid semi-IVs. As an application, I estimate the returns to working in the manufacturing sector using sector-specific semi-IVs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH