Weighted Fair Division with Matroid-Rank Valuations: Monotonicity and Strategyproofness

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Warut Suksompong, Nicholas Teh

Ngôn ngữ: eng

Ký hiệu phân loại: 128.33 Reason and rationality

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196712

Comment: Appears in the 16th International Symposium on Algorithmic Game Theory (SAGT), 2023We study the problem of fairly allocating indivisible goods to agents with weights corresponding to their entitlements. Previous work has shown that, when agents have binary additive valuations, the maximum weighted Nash welfare rule is resource-, population-, and weight-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time. We generalize these results to the class of weighted additive welfarist rules with concave functions and agents with matroid-rank (also known as binary submodular) valuations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH