Efficient OCR for Building a Diverse Digital History

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tom Bryan, Jacob Carlson, Melissa Dell

Ngôn ngữ: eng

Ký hiệu phân loại: 025.86 Operations of libraries, archives, information centers

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 196846

Thousands of users consult digital archives daily, but the information they can access is unrepresentative of the diversity of documentary history. The sequence-to-sequence architecture typically used for optical character recognition (OCR) - which jointly learns a vision and language model - is poorly extensible to low-resource document collections, as learning a language-vision model requires extensive labeled sequences and compute. This study models OCR as a character level image retrieval problem, using a contrastively trained vision encoder. Because the model only learns characters' visual features, it is more sample efficient and extensible than existing architectures, enabling accurate OCR in settings where existing solutions fail. Crucially, the model opens new avenues for community engagement in making digital history more representative of documentary history.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH