Large Global Volatility Matrix Analysis Based on Observation Structural Information

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sung Hoon Choi, Donggyu Kim

Ngôn ngữ: eng

Ký hiệu phân loại: 149.96 Structuralism

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197128

In this paper, we develop a novel large volatility matrix estimation procedure for analyzing global financial markets. Practitioners often use lower-frequency data, such as weekly or monthly returns, to address the issue of different trading hours in the international financial market. However, this approach can lead to inefficiency due to information loss. To mitigate this problem, our proposed method, called Structured Principal Orthogonal complEment Thresholding (Structured-POET), incorporates observation structural information for both global and national factor models. We establish the asymptotic properties of the Structured-POET estimator, and also demonstrate the drawbacks of conventional covariance matrix estimation procedures when using lower-frequency data. Finally, we apply the Structured-POET estimator to an out-of-sample portfolio allocation study using international stock market data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH