Semiparametrically Optimal Cointegration Test

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bo Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197302

This paper aims to address the issue of semiparametric efficiency for cointegration rank testing in finite-order vector autoregressive models, where the innovation distribution is considered an infinite-dimensional nuisance parameter. Our asymptotic analysis relies on Le Cam's theory of limit experiment, which in this context takes the form of Locally Asymptotically Brownian Functional (LABF). By leveraging the structural version of LABF, an Ornstein-Uhlenbeck experiment, we develop the asymptotic power envelopes of asymptotically invariant tests for both cases with and without a time trend. We propose feasible tests based on a nonparametrically estimated density and demonstrate that their power can achieve the semiparametric power envelopes, making them semiparametrically optimal. We validate the theoretical results through large-sample simulations and illustrate satisfactory size control and excellent power performance of our tests under small samples. In both cases with and without time trend, we show that a remarkable amount of additional power can be obtained from non-Gaussian distributions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH