This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) t-statistic in terms of functionals of Ornstein-Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors - the dividend price ratio, earnings price ratio, and book-to-market ratio - to predict the median, shoulders, and tails of the stock return distribution.