Semiparametric Efficiency Gains From Parametric Restrictions on Propensity Scores

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Haruki Kono

Ngôn ngữ: eng

Ký hiệu phân loại: 338.45 Production efficiency

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197476

We explore how much knowing a parametric restriction on propensity scores improves semiparametric efficiency bounds in the potential outcome framework. For stratified propensity scores, considered as a parametric model, we derive explicit formulas for the efficiency gain from knowing how the covariate space is split. Based on these, we find that the efficiency gain decreases as the partition of the stratification becomes finer. For general parametric models, where it is hard to obtain explicit representations of efficiency bounds, we propose a novel framework that enables us to see whether knowing a parametric model is valuable in terms of efficiency even when it is high-dimensional. In addition to the intuitive fact that knowing the parametric model does not help much if it is sufficiently flexible, we discover that the efficiency gain can be nearly zero even though the parametric assumption significantly restricts the space of possible propensity scores.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH