Matrix GARCH Model: Inference and Application

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Feiyu Jiang, Dong Li, Cheng Yu, Ke Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 197491

Matrix-variate time series data are largely available in applications. However, no attempt has been made to study their conditional heteroskedasticity that is often observed in economic and financial data. To address this gap, we propose a novel matrix generalized autoregressive conditional heteroskedasticity (GARCH) model to capture the dynamics of conditional row and column covariance matrices of matrix time series. The key innovation of the matrix GARCH model is the use of a univariate GARCH specification for the trace of conditional row or column covariance matrix, which allows for the identification of conditional row and column covariance matrices. Moreover, we introduce a quasi maximum likelihood estimator (QMLE) for model estimation and develop a portmanteau test for model diagnostic checking. Simulation studies are conducted to assess the finite-sample performance of the QMLE and portmanteau test. To handle large dimensional matrix time series, we also propose a matrix factor GARCH model. Finally, we demonstrate the superiority of the matrix GARCH and matrix factor GARCH models over existing multivariate GARCH-type models in volatility forecasting and portfolio allocations using three applications on credit default swap prices, global stock sector indices, and future prices.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH