Modelling and Forecasting Macroeconomic Risk with Time Varying Skewness Stochastic Volatility Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrea Renzetti

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197530

Comment: 41 pages,7 figuresMonitoring downside risk and upside risk to the key macroeconomic indicators is critical for effective policymaking aimed at maintaining economic stability. In this paper I propose a parametric framework for modelling and forecasting macroeconomic risk based on stochastic volatility models with Skew-Normal and Skew-t shocks featuring time varying skewness. Exploiting a mixture stochastic representation of the Skew-Normal and Skew-t random variables, in the paper I develop efficient posterior simulation samplers for Bayesian estimation of both univariate and VAR models of this type. In an application, I use the models to predict downside risk to GDP growth in the US and I show that these models represent a competitive alternative to semi-parametric approaches such as quantile regression. Finally, estimating a medium scale VAR on US data I show that time varying skewness is a relevant feature of macroeconomic and financial shocks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH