Optimization of the Generalized Covariance Estimator in Noncausal Processes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gianluca Cubadda, Francesco Giancaterini, Alain Hecq, Joann Jasiak

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197594

This paper investigates the performance of the Generalized Covariance estimator (GCov) in estimating and identifying mixed causal and noncausal models. The GCov estimator is a semi-parametric method that minimizes an objective function without making any assumptions about the error distribution and is based on nonlinear autocovariances to identify the causal and noncausal orders. When the number and type of nonlinear autocovariances included in the objective function of a GCov estimator is insufficient/inadequate, or the error density is too close to the Gaussian, identification issues can arise. These issues result in local minima in the objective function, which correspond to parameter values associated with incorrect causal and noncausal orders. Then, depending on the starting point and the optimization algorithm employed, the algorithm can converge to a local minimum. The paper proposes the use of the Simulated Annealing (SA) optimization algorithm as an alternative to conventional numerical optimization methods. The results demonstrate that SA performs well when applied to mixed causal and noncausal models, successfully eliminating the effects of local minima. The proposed approach is illustrated by an empirical application involving a bivariate commodity price series.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH