Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matteo Barigozzi

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 197755

Comment: arXiv admin note: text overlap with arXiv:2211.01921 which is written by the same author. The two papers do not overlap as they contain different results although they have the same assumptions. The previous version of this paper v4 wrongly contains the wrong filesThis paper investigates the properties of Quasi Maximum Likelihood estimation of an approximate factor model for an $n$-dimensional vector of stationary time series. We prove that the factor loadings estimated by Quasi Maximum Likelihood are asymptotically equivalent, as $n\to\infty$, to those estimated via Principal Components. Both estimators are, in turn, also asymptotically equivalent, as $n\to\infty$, to the unfeasible Ordinary Least Squares estimator we would have if the factors were observed. We also show that the usual sandwich form of the asymptotic covariance matrix of the Quasi Maximum Likelihood estimator is asymptotically equivalent to the simpler asymptotic covariance matrix of the unfeasible Ordinary Least Squares. All these results hold in the general case in which the idiosyncratic components are cross-sectionally heteroskedastic, as well as serially and cross-sectionally weakly correlated. The intuition behind these results is that as $n\to\infty$ the factors can be considered as observed, thus showing that factor models enjoy a blessing of dimensionality.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH