Functional Differencing in Networks

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Stéphane Bonhomme, Kevin Dano

Ngôn ngữ: eng

Ký hiệu phân loại: 004.65 Communications network architecture

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 197774

Economic interactions often occur in networks where heterogeneous agents (such as workers or firms) sort and produce. However, most existing estimation approaches either require the network to be dense, which is at odds with many empirical networks, or they require restricting the form of heterogeneity and the network formation process. We show how the functional differencing approach introduced by Bonhomme (2012) in the context of panel data, can be applied in network settings to derive moment restrictions on model parameters and average effects. Those restrictions are valid irrespective of the form of heterogeneity, and they hold in both dense and sparse networks. We illustrate the analysis with linear and nonlinear models of matched employer-employee data, in the spirit of the model introduced by Abowd, Kramarz, and Margolis (1999).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH