Control of flow behavior in complex fluids using automatic differentiation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohammed G Alhashim, Michael P Brenner, Kaylie Hausknecht

Ngôn ngữ: eng

Ký hiệu phân loại: 636.0885 Animal husbandry

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 198036

Inverse design of complex flows is notoriously challenging because of the high cost of high dimensional optimization. Usually, optimization problems are either restricted to few control parameters, or adjoint-based approaches are used to convert the optimization problem into a boundary value problem. Here, we show that the recent advances in automatic differentiation (AD) provide a generic platform for solving inverse problems in complex fluids. To demonstrate the versatility of the approach, we solve an array of optimization problems related to active matter motion in Newtonian fluids, dispersion in structured porous media, and mixing in journal bearing. Each of these problems highlights the advantages of AD in ease of implementation and computational efficiency to solve high-dimensional optimization problems involving particle-laden flows.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH