Stochastic Variational Inference for GARCH Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Feng Chen, Clara Grazian, Luca Maestrini, Hanwen Xuan

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 198116

Comment: 23 pages, 10 figuresStochastic variational inference algorithms are derived for fitting various heteroskedastic time series models. We examine Gaussian, t, and skew-t response GARCH models and fit these using Gaussian variational approximating densities. We implement efficient stochastic gradient ascent procedures based on the use of control variates or the reparameterization trick and demonstrate that the proposed implementations provide a fast and accurate alternative to Markov chain Monte Carlo sampling. Additionally, we present sequential updating versions of our variational algorithms, which are suitable for efficient portfolio construction and dynamic asset allocation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH