Generalized Information Criteria for Structured Sparse Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eduardo F Mendes, Gabriel J. P Pinto

Ngôn ngữ: eng

Ký hiệu phân loại: 016 Bibliographies and catalogs of works on specific subjects or in specific disciplines

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198144

Regularized m-estimators are widely used due to their ability of recovering a low-dimensional model in high-dimensional scenarios. Some recent efforts on this subject focused on creating a unified framework for establishing oracle bounds, and deriving conditions for support recovery. Under this same framework, we propose a new Generalized Information Criteria (GIC) that takes into consideration the sparsity pattern one wishes to recover. We obtain non-asymptotic model selection bounds and sufficient conditions for model selection consistency of the GIC. Furthermore, we show that the GIC can also be used for selecting the regularization parameter within a regularized $m$-estimation framework, which allows practical use of the GIC for model selection in high-dimensional scenarios. We provide examples of group LASSO in the context of generalized linear regression and low rank matrix regression.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH