Learning Source Biases: Multisource Misspecifications and Their Impact on Predictions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Junnan He, Lin Hu, Matthew Kovach, Anqi Li

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198196

We study how a Bayesian decision maker (DM) learns about the biases of novel information sources to predict a random state. Absent frictions, the DM uses familiar sources as yardsticks to accurately discern the biases of novel sources. We derive the distortion of the DM's long-run prediction when he holds misspecified beliefs about the biases of several familiar sources. The distortion aggregates misspecifications across familiar sources independently of the number and nature of the novel sources the DM learns about. This has implications for labor market discrimination, media bias, and project finance and oversight.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH