A detection analysis for temporal memory patterns at different time-scales

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David Lambert, Fabio Vanni

Ngôn ngữ: eng

Ký hiệu phân loại: 006.4 Computer pattern recognition

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198228

This paper introduces a novel methodology that utilizes latency to unveil time-series dependence patterns. A customized statistical test detects memory dependence in event sequences by analyzing their inter-event time distributions. Synthetic experiments based on the renewal-aging property assess the impact of observer latency on the renewal property. Our test uncovers memory patterns across diverse time scales, emphasizing the event sequence's probability structure beyond correlations. The time series analysis produces a statistical test and graphical plots which helps to detect dependence patterns among events at different time-scales if any. Furthermore, the test evaluates the renewal assumption through aging experiments, offering valuable applications in time-series analysis within economics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH