Moran's I Lasso for models with spatially correlated data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sylvain Barde, Rowan Cherodian, Guy Tchuente

Ngôn ngữ: eng

Ký hiệu phân loại: 688.1 Models and miniatures

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198299

This paper proposes a Lasso-based estimator which uses information embedded in the Moran statistic to develop a selection procedure called Moran's I Lasso (Mi-Lasso) to solve the Eigenvector Spatial Filtering (ESF) eigenvector selection problem. ESF uses a subset of eigenvectors from a spatial weights matrix to efficiently account for any omitted cross-sectional correlation terms in a classical linear regression framework, thus does not require the researcher to explicitly specify the spatial part of the underlying structural model. We derive performance bounds and show the necessary conditions for consistent eigenvector selection. The key advantages of the proposed estimator are that it is intuitive, theoretically grounded, and substantially faster than Lasso based on cross-validation or any proposed forward stepwise procedure. Our main simulation results show the proposed selection procedure performs well in finite samples. Compared to existing selection procedures, we find Mi-Lasso has one of the smallest biases and mean squared errors across a range of sample sizes and levels of spatial correlation. An application on house prices further demonstrates Mi-Lasso performs well compared to existing procedures.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH