Best-Response Dynamics in Tullock Contests with Convex Costs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abheek Ghosh

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198302

Comment: 43 pages. WINE '23 versionWe study the convergence of best-response dynamics in Tullock contests with convex cost functions (these games always have a unique pure-strategy Nash equilibrium). We show that best-response dynamics rapidly converges to the equilibrium for homogeneous agents. For two homogeneous agents, we show convergence to an $\epsilon$-approximate equilibrium in $\Theta(\log\log(1/\epsilon))$ steps. For $n \ge 3$ agents, the dynamics is not unique because at each step $n-1 \ge 2$ agents can make non-trivial moves. We consider the model proposed by Ghosh and Goldberg (2023), where the agent making the move is randomly selected at each time step. We show convergence to an $\epsilon$-approximate equilibrium in $O(\beta \log(n/(\epsilon\delta)))$ steps with probability $1-\delta$, where $\beta$ is a parameter of the agent selection process, e.g., $\beta = n^2 \log(n)$ if agents are selected uniformly at random at each time step. We complement this result with a lower bound of $\Omega(n + \log(1/\epsilon)/\log(n))$ applicable for any agent selection process.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH