Identification and Estimation of a Semiparametric Logit Model using Network Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Brice Romuald Gueyap Kounga

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198319

This paper studies the identification and estimation of a semiparametric binary network model in which the unobserved social characteristic is endogenous, that is, the unobserved individual characteristic influences both the binary outcome of interest and how links are formed within the network. The exact functional form of the latent social characteristic is not known. The proposed estimators are obtained based on matching pairs of agents whose network formation distributions are the same. The consistency and the asymptotic distribution of the estimators are proposed. The finite sample properties of the proposed estimators in a Monte-Carlo simulation are assessed. We conclude this study with an empirical application.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH