Smoothed instrumental variables quantile regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David M Kaplan

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198332

 Comment: accepted manuscriptIn this article, I introduce the sivqr command, which estimates the coefficients of the instrumental variables (IV) quantile regression model introduced by Chernozhukov and Hansen (2005). The sivqr command offers several advantages over the existing ivqreg and ivqreg2 commands for estimating this IV quantile regression model, which complements the alternative "triangular model" behind cqiv and the "local quantile treatment effect" model of ivqte. Computationally, sivqr implements the smoothed estimator of Kaplan and Sun (2017), who show that smoothing improves both computation time and statistical accuracy. Standard errors are computed analytically or by Bayesian bootstrap
  for non-iid sampling, sivqr is compatible with bootstrap. I discuss syntax and the underlying methodology, and I compare sivqr with other commands in an example.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH