Optimal Categorical Instrumental Variables

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thomas Wiemann

Ngôn ngữ: eng

Ký hiệu phân loại: 522.5 Auxiliary instruments

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198520

This paper discusses estimation with a categorical instrumental variable in settings with potentially few observations per category. The proposed categorical instrumental variable estimator (CIV) leverages a regularization assumption that implies existence of a latent categorical variable with fixed finite support achieving the same first stage fit as the observed instrument. In asymptotic regimes that allow the number of observations per category to grow at arbitrary small polynomial rate with the sample size, I show that when the cardinality of the support of the optimal instrument is known, CIV is root-n asymptotically normal, achieves the same asymptotic variance as the oracle IV estimator that presumes knowledge of the optimal instrument, and is semiparametrically efficient under homoskedasticity. Under-specifying the number of support points reduces efficiency but maintains asymptotic normality. In an application that leverages judge fixed effects as instruments, CIV compares favorably to commonly used jackknife-based instrumental variable estimators.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH