Photovoltaic technologies have garnered significant attention towards generating renewable and clean energy from solar power. Quantum-dot-sensitized solar cells represent a promising third-generation photovoltaic technology that offers alternatives to conventional silicon-based solar cells due to their unique properties, their favourable optoelectronic properties for photovoltaic applications including simplified manufacturing, lower processing temperatures, enhanced flexibility, semi-transparent design, and a theoretical efficiency up to 44%. The unique characteristic of tailoring the size and composition of quantum dots makes them valuable absorber materials capable of efficiently harnessing a broader range of the solar spectrum. The potential of quantum dot-sensitized solar cells to revolutionize the field of photovoltaic technology is a cause for optimism. However, the major limitation of the overall power conversion efficiency lies in their inability to absorb ultraviolet and near-infrared. Therefore, a photovoltaic technology that can effectively harness the entire solar spectrum becomes imperative. This review discusses the synthesis and light conversion mechanisms of these solar cells. Additionally, this review offers an overview of the various advancements made in quantum dot-sensitized solar cells for enhancement in the efficiency of energy conversion. It focuses on the light-absorbing materials used, their efficiency, and the advantages and drawbacks of quantum dot solar cell technology.