Uterine corpus endometrial carcinoma (UCEC) is a prevalent malignancy within the female reproductive system, with a rising global incidence. Although thyroid hormone receptor interacting protein 13 (TRIP13) has been implicated in various tumor etiologies and progressions, its role in UCEC remains poorly characterized. This study aimed to delineate TRIP13's expression profile in UCEC by analyzing transcriptome data from multiple databases. We investigated genomic alterations and epigenetic modifications of the TRIP13 gene using the cBioPortal tool. The prognostic value of TRIP13 was assessed via Kaplan-Meier survival analysis and Cox regression modeling. Additionally, we examined TRIP13's impact on immunotherapy responsiveness and chemotherapy sensitivity through immunological and pharmacological analyses. The expression of TRIP13 in both normal endometrial and cancer cell lines was evaluated using quantitative real-time polymerase chain reaction (qPCR). Our findings reveal that TRIP13 expression in UCEC tumor samples is significantly higher than in normal tissues and increases with tumor grade and stage progression. High TRIP13 expression is significantly associated with poor prognosis in UCEC patients, establishing it as an independent prognostic biomarker. TRIP13 shows a positive correlation with immunosuppressive cell infiltration and a negative correlation with immune-activating cell infiltration, suggesting a potential role in tumor immune evasion. Further analysis identified TRIP13 as a potential biomarker for predicting immunotherapy response. Moreover, TRIP13 expression is significantly associated with sensitivity to certain chemotherapeutic agents, indicating its potential as a therapeutic target. qPCR experiments confirmed the overexpression of TRIP13 in endometrial cancer cell lines. The role of TRIP13 in modulating the tumor immune microenvironment, as well as its predictive value for immunotherapy and chemotherapy responses, underscores its importance in developing personalized treatment strategies for UCEC. These findings provide novel molecular targets and therapeutic insights for a precision medicine approach to UCEC.