Can AI Detect Wash Trading? Evidence from NFTs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Brett Hemenway Falk, Gerry Tsoukalas, Niuniu Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 542.74 Techniques, procedures, apparatus, equipment, materials

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 198655

Comment: RevisionExisting studies on crypto wash trading often use indirect statistical methods or leaked private data, both with inherent limitations. This paper leverages public on-chain NFT data for a more direct and granular estimation. Analyzing three major exchanges, we find that ~38% (30-40%) of trades and ~60% (25-95%) of traded value likely involve manipulation, with significant variation across exchanges. This direct evidence enables a critical reassessment of existing indirect methods, identifying roundedness-based regressions \`a la Cong et al. (2023) as most promising, though still error-prone in the NFT setting. To address this, we develop an AI-based estimator that integrates these regressions in a machine learning framework, significantly reducing both exchange- and trade-level estimation errors in NFT markets (and beyond).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH