Distinct binding affinity of perfluoroalkyl acids to plant and animal proteins revealed by dialysis experiments, fluorescence spectroscopy, and QSAR modeling.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hao Chen, Yarui Liu, Yuefei Ruan, Xiaojia Yuan, Yue Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 542.6 Filtering and dialysis

Thông tin xuất bản: Netherlands : Ecotoxicology and environmental safety , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 199328

Understanding the binding dynamics between perfluoroalkyl acids (PFAAs) and proteins is crucial for risk assessment, as protein binding plays a vital role in the bioaccumulation of PFAAs. This study employed dialysis experiments to measure the protein-water partition coefficient of PFAAs with representative plant and animal proteins, including standard bovine serum albumin, soy protein isolate, and C-phycocyanin. Fluorescence spectroscopy was investigated to elucidate the binding affinity of PFAAs on bovine serum albumin (BSA). Additionally, through the construction of the quantitative structure-activity relationship (QSAR) model, this research comprehensively analyzed the binding characteristics of various PFAAs to proteins, offering insights into the molecular mechanisms of PFAAs-protein interactions. The results revealed that the binding capacity of bovine serum albumin for PFAAs was significantly superior to that of C-phycocyanin and soy protein isolate. Electrostatic attraction was the predominant factor influencing the interaction between proteins and PFAAs. The binding of PFAAs to proteins was chiefly mediated by tryptophan residues, and there was no notable change in the protein conformation pre- and post-binding. Finally, the QSAR models, constructed with energy gap (E
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH