To determine dose-optimized image acquisition parameters for good image quality (IQ) in neonatal chest radiography with a computed radiography (CR) CsBr needle detector vs. a wireless digital radiography (DR) CsI detector using different doses and filters.Physical resolution of the two detectors in unprocessed imaging of a contrast-detail phantom was automatically evaluated. Post-processed chest radiographic imaging of a neonatal phantom was used for Visual Grading Analysis (VGA) by three radiology raters. Different kVp, mAs, and filter settings were used. The VGA score (VGAS) and dose area product (DAP) were used to determine image acquisition parameters and dose levels for good image quality. Pixel data from segments corresponding to visual grading characteristics (VGC) was used to calculate signal-to-noise ratio, contrast-to-noise ratio (CNR), and signal profile curves. These results were compared to the raters' "ground truth" by Spearman's correlation.The CR detector had the highest resolution in unprocessed imaging, although this was dependent on a tube voltage of 66 kVp (P <
0.001), and more so than the DR detector. The VGAS showed no significant difference between the CR needle and the DR CsI detectors at the same DAP, or when using standard pediatric filtering of 3.5 mm Al + 0.1 mm Cu (P >
0.05). A lung dose level of 0.017 mSv was needed for good IQ (effective dose (