GCov-Based Portmanteau Test

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Joann Jasiak, Aryan Manafi Neyazi

Ngôn ngữ: eng

Ký hiệu phân loại: 331.892813871 Labor unions, labor-management bargaining and disputes

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 200104

Comment: 65 pages, 8 figuresWe study nonlinear serial dependence tests for non-Gaussian time series and residuals of dynamic models based on portmanteau statistics involving nonlinear autocovariances. A new test with an asymptotic $\chi^2$ distribution is introduced for testing nonlinear serial dependence (NLSD) in time series. This test is inspired by the Generalized Covariance (GCov) residual-based specification test, recently proposed as a diagnostic tool for semi-parametric dynamic models with i.i.d. non-Gaussian errors. It has a $\chi^2$ distribution when the model is correctly specified and estimated by the GCov estimator. We derive new asymptotic results under local alternatives for testing hypotheses on the parameters of a semi-parametric model. We extend it by introducing a GCov bootstrap test for residual diagnostics,\color{black} which is also available for models estimated by a different method, such as the maximum likelihood estimator under a parametric assumption on the error distribution. \color{black} A simulation study shows that the tests perform well in applications to mixed causal-noncausal autoregressive models. The GCov specification test is used to assess the fit of a mixed causal-noncausal model of aluminum prices with locally explosive patterns, i.e. bubbles and spikes between 2005 and 2024.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH