Deep Learning Protocol for Predicting Full-Spectrum Infrared and Raman Spectra of Polypeptides and Proteins Using All-Atom Models.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Wei Hu, Jun Jiang, Xiaochen Yang, Xun Zhang, Yujin Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: United States : The journal of physical chemistry letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 200938

Infrared (IR) spectroscopy and Raman spectroscopy are powerful tools for probing protein and peptide structures due to their capability to provide molecular fingerprints. As a popular spectral simulation method, the quantum chemistry (QC) calculation is usually hampered by the high computational cost and low efficiency. In this study, we developed a comprehensive data set of IR and Raman spectra for amino acids, dipeptides, and tripeptides. Using this data set, we applied transfer learning with DetaNet (a deep equivariant tensor attention network) to simulate full-spectrum IR and Raman spectra for large polypeptides and proteins. We have demonstrated that the transfer-learned DetaNet (TL-DetaNet) model successfully simulated the vibrational spectra of proteins with thousands of atoms, far exceeding traditional QC limitations. Additionally, TL-DetaNet achieved an efficiency that was 10
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH