Decision Theory for Treatment Choice Problems with Partial Identification

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: José Luis Montiel Olea, Chen Qiu, Jörg Stoye

Ngôn ngữ: eng

Ký hiệu phân loại: 003.56 Decision theory

Thông tin xuất bản: 2023

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201149

 We apply classical statistical decision theory to a large class of treatment choice problems with partial identification, revealing important theoretical and practical challenges but also interesting research opportunities. The challenges are: In a general class of problems with Gaussian likelihood, all decision rules are admissible
  it is maximin-welfare optimal to ignore all data
  and, for severe enough partial identification, there are infinitely many minimax-regret optimal decision rules, all of which sometimes randomize the policy recommendation. The opportunities are: We introduce a profiled regret criterion that can reveal important differences between rules and render some of them inadmissible
  and we uniquely characterize the minimax-regret optimal rule that least frequently randomizes. We apply our results to aggregation of experimental estimates for policy adoption, to extrapolation of Local Average Treatment Effects, and to policy making in the presence of omitted variable bias.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH