Random partitions, potential, value, and externalities

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: André Casajus, Yukihiko Funaki, Frank Huettner

Ngôn ngữ: eng

Ký hiệu phân loại: 330 Economics

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201422

The Shapley value equals a player's contribution to the potential of a game. The potential is a most natural one-number summary of a game, which can be computed as the expected accumulated worth of a random partition of the players. This computation integrates the coalition formation of all players and readily extends to games with externalities. We investigate those potential functions for games with externalities that can be computed this way. It turns out that the potential that corresponds to the MPW solution introduced by Macho-Stadler et al. (2007, J. Econ. Theory 135, 339--356) is unique in the following sense. It is obtained as the expected accumulated worth of a random partition, it generalizes the potential for games without externalities, and it induces a solution that satisfies the null player property even in the presence of externalities.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH