Selective linear segmentation for detecting relevant parameter changes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alain Coën, Arnaud Dufays, Aristide Houndetoungan

Ngôn ngữ: eng

Ký hiệu phân loại: 519.72 Linear programming

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201508

Change-point processes are one flexible approach to model long time series. We propose a method to uncover which model parameter truly vary when a change-point is detected. Given a set of breakpoints, we use a penalized likelihood approach to select the best set of parameters that changes over time and we prove that the penalty function leads to a consistent selection of the true model. Estimation is carried out via the deterministic annealing expectation-maximization algorithm. Our method accounts for model selection uncertainty and associates a probability to all the possible time-varying parameter specifications. Monte Carlo simulations highlight that the method works well for many time series models including heteroskedastic processes. For a sample of 14 Hedge funds (HF) strategies, using an asset based style pricing model, we shed light on the promising ability of our method to detect the time-varying dynamics of risk exposures as well as to forecast HF returns.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH