Continuous Representations of Preferences by Means of Two Continuous Functions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gianni Bosi, Asier Estevan

Ngôn ngữ: eng

Ký hiệu phân loại: 517.35 [Unassigned]

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 201546

Let $\precsim$ be a reflexive binary relation on a topological space $(X, \tau )$. A pair $(u,v)$ of continuous real-valued functions on $(X, \tau )$ is said to be a {\em continuous representation} of $\precsim$ if, for all $x,y \in X$, [$(x \precsim y \Leftrightarrow u(x) \leq v(y))$]. In this paper we provide a characterization of the existence of a continuous representation of this kind in the general case when neither the functions $u$ and $v$ nor the topological space $(X,\tau )$ are required to satisfy any particular assumptions. Such characterization is based on a suitable continuity assumption of the binary relation $\precsim$, called {\em weak continuity}. In this way, we generalize all the previous results on the continuous representability of interval orders, and also of total preorders, as particular cases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH