Nowcasting with Mixed Frequency Data Using Gaussian Processes

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Niko Hauzenberger, Massimiliano Marcellino, Michael Pfarrhofer, Anna Stelzer

Ngôn ngữ: eng

Ký hiệu phân loại: 551.63 Weather forecasting and forecasts, reporting and reports

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 201614

 Comment: Keywords: prediction, MIDAS, machine learning, Bayesian additive regression trees
  JEL: C11, C22, C53, E31, E37We develop Bayesian machine learning methods for mixed data sampling (MIDAS) regressions. This involves handling frequency mismatches and specifying functional relationships between many predictors and the dependent variable. We use Gaussian processes (GPs) and compress the input space with structured and unstructured MIDAS variants. This yields several versions of GP-MIDAS with distinct properties and implications, which we evaluate in short-horizon now- and forecasting exercises with both simulated data and data on quarterly US output growth and inflation in the GDP deflator. It turns out that our proposed framework leverages macroeconomic Big Data in a computationally efficient way and offers gains in predictive accuracy compared to other machine learning approaches along several dimensions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH