Estimating HANK with Micro Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Man Chon Iao, Yatheesan J Selvakumar

Ngôn ngữ: eng

Ký hiệu phân loại: 005.7 Data in computer systems

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201677

We propose an indirect inference strategy for estimating heterogeneous-agent business cycle models with micro data. At its heart is a first-order vector autoregression that is grounded in linear filtering theory as the cross-section grows large. The result is a fast, simple and robust algorithm for computing an approximate likelihood that can be easily paired with standard classical or Bayesian methods. Importantly, our method is compatible with the popular sequence-space solution method, unlike existing state-of-the-art approaches. We test-drive our method by estimating a canonical HANK model with shocks in both the aggregate and cross-section. Not only do simulation results demonstrate the appeal of our method, they also emphasize the important information contained in the entire micro-level distribution over and above simple moments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH