Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Martin C Arnold, Thilo Reinschlüssel

Ngôn ngữ: eng

Ký hiệu phân loại: 016 Bibliographies and catalogs of works on specific subjects or in specific disciplines

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201803

 Comment: 63 pages, 9 figures
  recent changes: updated acknowledgement and literature reviewWe propose a novel approach to elicit the weight of a potentially non-stationary regressor in the consistent and oracle-efficient estimation of autoregressive models using the adaptive Lasso. The enhanced weight builds on a statistic that exploits distinct orders in probability of the OLS estimator in time series regressions when the degree of integration differs. We provide theoretical results on the benefit of our approach for detecting stationarity when a tuning criterion selects the $\ell_1$ penalty parameter. Monte Carlo evidence shows that our proposal is superior to using OLS-based weights, as suggested by Kock [Econom. Theory, 32, 2016, 243-259]. We apply the modified estimator to model selection for German inflation rates after the introduction of the Euro. The results indicate that energy commodity price inflation and headline inflation are best described by stationary autoregressions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH