Calibrating doubly-robust estimators with unbalanced treatment assignment

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniele Ballinari

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 201862

Machine learning methods, particularly the double machine learning (DML) estimator (Chernozhukov et al., 2018), are increasingly popular for the estimation of the average treatment effect (ATE). However, datasets often exhibit unbalanced treatment assignments where only a few observations are treated, leading to unstable propensity score estimations. We propose a simple extension of the DML estimator which undersamples data for propensity score modeling and calibrates scores to match the original distribution. The paper provides theoretical results showing that the estimator retains the DML estimator's asymptotic properties. A simulation study illustrates the finite sample performance of the estimator.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH