Matrix-based Prediction Approach for Intraday Instantaneous Volatility Vector

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sung Hoon Choi, Donggyu Kim

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201882

In this paper, we introduce a novel method for predicting intraday instantaneous volatility based on Ito semimartingale models using high-frequency financial data. Several studies have highlighted stylized volatility time series features, such as interday auto-regressive dynamics and the intraday U-shaped pattern. To accommodate these volatility features, we propose an interday-by-intraday instantaneous volatility matrix process that can be decomposed into low-rank conditional expected instantaneous volatility and noise matrices. To predict the low-rank conditional expected instantaneous volatility matrix, we propose the Two-sIde Projected-PCA (TIP-PCA) procedure. We establish asymptotic properties of the proposed estimators and conduct a simulation study to assess the finite sample performance of the proposed prediction method. Finally, we apply the TIP-PCA method to an out-of-sample instantaneous volatility vector prediction study using high-frequency data from the S&P 500 index and 11 sector index funds.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH