Two-Person Adversarial Games are Zero-Sum: An Elaboration of a Folk Theorem

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: M. Ali Khan, Arthur Paul Pedersen, David Schrittesser

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 201918

 The observation that every two-person adversarial game is an affine transformation of a zero-sum game is traceable to Luce & Raiffa (1957) and made explicit in Aumann (1987). Recent work of (ADP) Adler et al. (2009), and of Raimondo (2023) in increasing generality, proves what has so far remained a conjecture. We present two proofs of an even more general formulation: the first draws on multilinear utility theory developed by Fishburn & Roberts (1978)
  the second is a consequence of the ADP proof itself for a special case of a two-player game with a set of three actions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH