Fragile Stable Matchings

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kirill Rudov

Ngôn ngữ: eng

Ký hiệu phân loại: 662.5 Matches

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 202031

We show how fragile stable matchings are in a decentralized one-to-one matching setting. The classical work of Roth and Vande Vate (1990) suggests simple decentralized dynamics in which randomly-chosen blocking pairs match successively. Such decentralized interactions guarantee convergence to a stable matching. Our first theorem shows that, under mild conditions, any unstable matching -- including a small perturbation of a stable matching -- can culminate in any stable matching through these dynamics. Our second theorem highlights another aspect of fragility: stabilization may take a long time. Even in markets with a unique stable matching, where the dynamics always converge to the same matching, decentralized interactions can require an exponentially long duration to converge. A small perturbation of a stable matching may lead the market away from stability and involve a sizable proportion of mismatched participants for extended periods. Our results hold for a broad class of dynamics.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH