Learning Optimal Behavior Through Reasoning and Experiences

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Cosmin Ilut, Rosen Valchev

Ngôn ngữ: eng

Ký hiệu phân loại: 153.1 Memory and learning

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 202148

We develop a novel framework of bounded rationality under cognitive frictions that studies learning over optimal behavior through both deliberative reasoning and accumulated experiences. Using both types of information, agents engage in Bayesian non-parametric estimation of the unknown action value function. Reasoning signals are produced internally through mental deliberation, subject to a cognitive cost. Experience signals are the observed utility outcomes at previous actions. Agents' subjective estimation uncertainty, which evolves through information accumulation, modulates the two modes of learning in a state- and history-dependent way. We discuss how the model draws on and bridges conceptual, methodological and empirical insights from both economics and the cognitive sciences literature on reinforcement learning.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH