Moran's I 2-Stage Lasso: for Models with Spatial Correlation and Endogenous Variables

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sylvain Barde, Rowan Cherodian, Guy Tchuente

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 202206

We propose a novel estimation procedure for models with endogenous variables in the presence of spatial correlation based on Eigenvector Spatial Filtering. The procedure, called Moran's $I$ 2-Stage Lasso (Mi-2SL), uses a two-stage Lasso estimator where the Standardised Moran's I is used to set the Lasso tuning parameter. Unlike existing spatial econometric methods, this has the key benefit of not requiring the researcher to explicitly model the spatial correlation process, which is of interest in cases where they are only interested in removing the resulting bias when estimating the direct effect of covariates. We show the conditions necessary for consistent and asymptotically normal parameter estimation assuming the support (relevant) set of eigenvectors is known. Our Monte Carlo simulation results also show that Mi-2SL performs well against common alternatives in the presence of spatial correlation. Our empirical application replicates Cadena and Kovak (2016) instrumental variables estimates using Mi-2SL and shows that in that case, Mi-2SL can boost the performance of the first stage.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH