Estimation and Inference for Three-Dimensional Panel Data Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guohua Feng, Jiti Gao, Fei Liu, Bin Peng

Ngôn ngữ: eng

Ký hiệu phân loại: 006.693 Three-dimensional graphics

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 202329

Hierarchical panel data models have recently garnered significant attention. This study contributes to the relevant literature by introducing a novel three-dimensional (3D) hierarchical panel data model, which integrates panel regression with three sets of latent factor structures: one set of global factors and two sets of local factors. Instead of aggregating latent factors from various nodes, as seen in the literature of distributed principal component analysis (PCA), we propose an estimation approach capable of recovering the parameters of interest and disentangling latent factors at different levels and across different dimensions. We establish an asymptotic theory and provide a bootstrap procedure to obtain inference for the parameters of interest while accommodating various types of cross-sectional dependence and time series autocorrelation. Finally, we demonstrate the applicability of our framework by examining productivity convergence in manufacturing industries worldwide.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH