Long run consequence of p-hacking

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xuanye Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 338.14 Factors affecting production

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 202342

We study the theoretical consequence of p-hacking on the accumulation of knowledge under the framework of mis-specified Bayesian learning. A sequence of researchers, in turn, choose projects that generate noisy information in a field. In choosing projects, researchers need to carefully balance as projects generates big information are less likely to succeed. In doing the project, a researcher p-hacks at intensity $\varepsilon$ so that the success probability of a chosen project increases (unduly) by a constant $\varepsilon$. In interpreting previous results, researcher behaves as if there is no p-hacking because the intensity $\varepsilon$ is unknown and presumably small. We show that over-incentivizing information provision leads to the failure of learning as long as $\varepsilon\neq 0$. If the incentives of information provision is properly provided, learning is correct almost surely as long as $\varepsilon$ is small.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH