Dynamic Latent-Factor Model with High-Dimensional Asset Characteristics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Adam Baybutt

Ngôn ngữ: eng

Ký hiệu phân loại: 155.234 Determinants

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 202767

Comment: 58 pages, 6 tablesWe develop novel estimation procedures with supporting econometric theory for a dynamic latent-factor model with high-dimensional asset characteristics, that is, the number of characteristics is on the order of the sample size. Utilizing the Double Selection Lasso estimator, our procedure employs regularization to eliminate characteristics with low signal-to-noise ratios yet maintains asymptotically valid inference for asset pricing tests. The crypto asset class is well-suited for applying this model given the limited number of tradable assets and years of data as well as the rich set of available asset characteristics. The empirical results present out-of-sample pricing abilities and risk-adjusted returns for our novel estimator as compared to benchmark methods. We provide an inference procedure for measuring the risk premium of an observable nontradable factor, and employ this to find that the inflation-mimicking portfolio in the crypto asset class has positive risk compensation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH